
REPORT DOCUMENTATION PAGE

RFORMING ORGANIZATION NUMBER(S) DOTiNANA

LIDS-P-1849 jo ct3
JAME OF PERFORMING OR"1NIZATION - .6o.O -IO

"
/a NAME OF MONITORING ORGANIZAION

Lab. for Infor. and Dec. Of appitcaboe) Office of Naval ResearchO Systems
,DDRESS (Oty, State, and ZIPCooe) 7t. ADDREE (City, State, and ZIP Cooe)

<' Room 35-404, LIDS 800 N. Quincy street
Cambridge, MA 02139 Arlington, VA 22217-5000

JAME OF FUNDING/SPONSORING B OFFICE SYMBOL 9. PROCUREMENI INSTRUMENT IDENTIFICATION NUMBER)RGANIZATION (If aOphIaDje) ONR N00014-85-K-0519
I -

d)DRESS (City, State, and ZIP Cooe) 10 SOURCE O LUNDING NUMBERS

PROGRAM PROAJCT I TASK WORK UNI-i
ELEMENT NO. NO. NO ,ACCESSION NO.

'1. TITLE (incjuae Securay Ciasstication)

GENERATION OF ARCHITECTURES FOR DISTRIBUTED INTELLIGENCE SYSTEMS

12. PERSONAL AUTHOR(S)

Alexander H. Levis1
3a. TYPE O REPORT 113 TjIME COVERED 1 DATE O; REPORT (Year, Mont%, Day) 5 PAGE COUNT
Technical :ROM O 1989 Feb. I

16. SUPPLEMENTARY NOTATION

COS.T CODES 8 SUBJECT TERrAS (Continue on reverse it nece .ary ana ,oenTliy DY 0OCK nuIr,.ei,
FIELD I GROUP I SLU-GROUD

19 AB357C IConrlnue on revere if neceary ana oentrry Dy O)Co nurnDer)

An approach to the modeling of discrete event distributed intellicence systems is
presented that uses ordinary ~eoi Nets for fixed structure architectures. The model
leads to the precise formulation of the problem of generating the complete set ofarchitectures that satisf, a number of resource and design constraints. Two aigo-
rithms are presented: the first one (the DFS algorithm, starts with the specification
of the desired functionality and generates data flow s-uctures with prescribed
redundancy and complexity; then the vanous functions are allocated to resources,
the second one (the Lattice algorithm) starts with a given set of decision making
units and obtains the partally ordered sets that contain all the feasibl! architectures.
Tne resulinc architectures can be analyzed to evaluate their performance characIer-istics. MA ,4N MA ,-0",w r-; .- er ,C ,z-- ,@"' 7 ,1 L '.1

[STF;., T;O ,; '.;..A .IT:. C' AESTRCT $2' 4BSTR.CT SE:, _P1TY r.A:SSIg, . !TON

0~a :'E D=E'OS:'S, 'NDj. 2J E-ON- -,!ruoe Area Cooej

DD FORM 1473, ;L M'R F e:,,o ma, oe uec up,. ,-,au.:ec

CAM. ~?e cr1 ons ale Oopl

89 :5 O Icv

FEBRUARY 1989 LIDS-P- 1849

GENERATION OF ARCHITECTURES FOR
DISTRIBUTED INTELLIGENCE SYSTEMS Accesion Fo,

NTIS CRA&l
DTIC TAB '
U~innounced 0-

Alexander H. Levis Justificaticn

Laboratory for Information and Decision Systems By ,_ _ _ ,
Massachusetts Institute of Technology Distriutioni n

Cambridge, MA 02139 USA AvdffdbIllty Codes

Avail and/or

Dist Special

ABSTRACT

An approach to the modeling of discrete event distributed intelligence systems is
presented that uses ordinary Petri Nets for fixed structure architectures. The model
leads to the precise formulation of the problem of generating the complete set of
architectures that satisfy a number of resource and design constraints. Two algo-
rithms are presented: the first one (the DFS algorithm) starts with the specification
of the desired functionality and generates data flow structures with prescribed
redundancy and complexity; then the various functions are allocated to resources;
the second one (the Lattice algorithm) starts with a given set of decision making
units and obtains the partially ordered sets that contain all the feasible architectures.
The resulting architectures can be analyzed to evaluate their performance character-
istics.

* Invited paper to appear in the Proceedings of the 1989 IEEE International Conference on
Control and Applications (ICCON '89), Jerusalem, Israel, April 1989. This work was
supported by the Office of Naval Research under contract no. N00014-84-K-0519.

INTRODUCTION

A special class of systems, called distributed intelligence systems, is the focus of this paper
because it promises to provide models, analysis tools, and evaluation procedures that can be used
in the design of the architecture of the decision systems needed to manage large scale physical
systems. The term distributed intelligence systems is used in the sense of Minsky [1] who de-
fined as distributed the property that each function performed by a system is spread over a range
of locations so that each part's activity contributes a little to each of several different functions,

and as intelligence all the mental skills that at any moment we admire but do not understand.
These qualitative definitions are very appropriate: First, they include the concept that each entity

in the system, each node, is involved in the carrying out of more than one function. Second, they

allow for the boundary between machine intelligence and human intelligence not to be fixed, but
vary as the state of knowledge about a system changes.

We are considering the decision making or management level of large scale physical

systems, such as air traffic control centers, energy control centers of large scale power systems,

the operations management of flexible manufacturing plants, or a command, control and
communications system, either a military one, such as the one used in a naval battle group, or a

civilian one, such as the one used by a fire department in a large city. In all these cases, there are
some common characteristics or features: The assets managed by the decision system are
geographically distributed; there is some hierarchical structure either in the monitoring and

control system, the human decision system, or both, that introduces delays; there is some level of

decision making at each node; there is a fast tempo of operations that requires on-line decision
making; and there is some type of decision support system that interconnects the various nodes

allowing for information transmission and for the dissemination of decisions or commands. The

support system may also include decision aids that assist individual nodes in their decision
making functions. These decision aids are usually introduced to compensate for the bounded ra-
tionality of human decision makers.

Since we will be dealing with the management or decision making layer, it is appropriate to
model the process as a discrete event dynamical system. If a boundary is drawn around the sys-

tem to be modeled, then its interactions with the environment can be of two types: inputs and
outputs. The system receives signals, or stimuli, or tasks, and produces outputs, or responses,
or decisions. It is assumed that when an event occurs in the environment, it generates a signal

that is sensed by the system, by one or more sensors. The formulation is general enough to allow

for a single event to be sensed by different sensors at different times, or for different events to be
sensed by different sensors asynchronously. Thus, we can have either a single source producing

discrete events, selected from some finite set with some probability, at times also characterized

2

by a probability distribution, or we can have multiple sources producing independent events.

Similarly, the output or outputs are selected from finite sets.

The problem addressed in this paper is the generation of distributed architectures for the

class of systems described in the previous paragraphs. The design problem will be formulated in

two ways. In the first case, the functions to be performed by the system are given along with

certain desirable structural characteristics. In the second case, the decision making entities or

intelligent nodes are specified a priori. Both approaches are based on Petr Net theory and

concepts; some relevant definitions and results are reviewed in the next section.

OVERVIEW OF PETRI NET THEORY

A Petri Net - denoted by PN - is a bipartite directed graph represented by a quadruple

PN = (P, T, I, 0), where P is a finite set of places, denoted by circles, and T is a finite set of

transitions, denoted by bars [2]. A node will refer to either a place or a transition of PN. The

mappings I and 0 correspond to the set of directed arcs from places to transitions and to the set

of directed arcs from transitions to places, respectively. When I and 0 take values in {0,), the

resulting nets are called ordinary Petri Nets.

A marking of a Petri Net is a mapping M which assigns a non-negative integer number of

tokens to each place of the net. A marking can be represented by a n-dimensional integer vector,

also denoted by M, whose components correspond to the places of the net. A transition t is en-

abled by a given marking M if and only if for each input place p of t, M(p) e l(p,t). When a

transition is enabled it can fire. The new marking M' reached after the firing of t is defined as

follows :

(' p e P) M'(p) = M(p) - I(pt) + O(tp). (I)

A place p and a transition t are on a self-loop if p is both an input and an output place of t. A

Petri Net will be pure, if it does not contain self-loops. Petri Nets under consideration in this

article will all be pure; this is a reasonable assumption for information structures.

Certain basic graph-theoretic definitions apply readily to Petri Nets. A Petri Net is connected
if and only if there exists a path - not necessarily directed - from any node to any other node; it

is strongly connected if and only if there exists a directed path from any node to any other node.

A directed circuit is a directed path from one node back to itself. A directed elementary circuit is a

directed circuit in which no node appears more than once. Directed elementary circuits play a key

role in the theory of net invariants.

3

The topological structure of a pure Petri Net can be represented by an integer matrix C
called an incidence or flow matrix. C is a nxm matrix whose columns correspond to the m
transitions and whose rows correspond to the n places of the net. C is defined as follows:

Cij = O(tj,pi) - I(pi,tj) for 1 i < n and 1 5 j _ m. (2)

Note that the definition is restricted to pure Petri Nets. There is actually a problem with non-

pure Petri Nets in the sense that self-loops cannot be represented in the incidence matrix: a I and
a -1 cancel each other to yield a zero in the matrix, thus losing track of the existence of the self-

loop.
The mappings 0 and I can be reconstructed from the matrix C in the following trivial way:

O(tjpi) = max { Cij, 0 i; (3a)

I(pi,tj) =min (Cij, 0). (3b)

An initial marking MO is bounded if there exists a positive integer k such that, for every
reachable marking M, the number of tokens in each place is bounded by k. If k equals one, the
marking is said to be safe. A Petri Net PN is structurally bounded, if any initial marking of PN is
bounded. A marking Mo is live if for any transition t and for every reachable marking M there

exists a firing sequence from M that includes t. In other words, every transition of the net can fire

an infinite number of times. A Petri Net PN is structurally live, if any initial marking of PN is

live.
A marked graph is a strongly connected Petri Net in which each place has exactly one input

and one output transition. There is a useful relationship between the circuits of a marked graph

and the S-invariants. An S-invariant is an n x I non-negative integer vector x, element of the
kernel of the transpose of the incidence matrix C, i.e., x verifies the relation:

C' x = 0. (4)

Similarly, a T-invariant is an m x 1 non-negative integer vector y, element of the kernel of

C, i.e., y verifies the relation:

C y = 0. (5)

The set of places (resp. transitions) whose corresponding components in x (resp.y) are

gtrictly positive is called the support of the invariant and is denoted <x> (resp.<y>). The sup-
port of an invariant is said to be minimal if and only if it does not contain the support of another

4

invariant but itself and the empty set. Let x be an S-invariant of a Petri Net PN and let <x> be its

support. <x> is a set of places of PN, i.e., a subset of P. We call S-component associated with

x - denoted [x] - the subnet of PN whose set of places is <x> and whose transitions are the input

and output transitions of the places of <x> in PN. The T-components are defined in a similar

way.

Some useful properties of S- and T-invariants are listed without proof. The first property

establishes the conservation of the number of tokens belonging to the support <x> of an S-

invariant of a Petri Net. x is a S-invariant of PN, if and only if for any initial marking M0 of PN

and for any reachable marking M,

x' M = x' Mo (6)

Marked graphs play a key role in the quantitative modeling of information structures. The

following two results, due to Commoner and Holt [3], are of primary importance. In a marked

graph, the number of tokens in any elementary directed circuit - the token content of the circuit -

remains invariant by transition firings. Furthermore, a marking of a marked graph is live if and

only if the token content of every directed elementary circuit is strictly positive. Another result

relates directed circuits and S-components of a marked graph. It gives an algebraic characteriza-

tion of a topological concept and will be extensively used in the sequel: The minimal S-cornpo-

nents of a marked graph are exactly its elementary directed circuits.

THE DATA FLOW STRUCTURE ALGORITHM[4]

In the first approach to the generation of architectures of distributed intelligence systems, the

basic element is a five stage generic information and decision making process that represents a

functionality. By the term functionality, we refer to a sequence of processes that accomplish a

specific task. This sequence can be represented by a Petri Net that takes the form of a line of

alternating places and transitions; this structure leads to the observation that a functionality is

represented by an information flow path. The path starts with a place that depicts the input or

task to be performed. The first transition, IP for Initial processing, represents the first function

prior to any interaction with other information flow paths. Indeed, two types of interactions are

postulated. The first, Data Fusion [DF], provides for the sharing of data among different flow

paths. The second, Results Fusion [RF], allows the communication not of data, but of decisions

or results from one flow path to another. The Middle Processing [MPI and Final Processing [FP]

transitions model the processes or functions appropriate to each functionality. The line ends at a

place that represents the output.

5

If the functionality represents an information processing and decision making sequence, e.

g., human decision making, then the following interpretation can be given to the five stages. As

data are received they are processed in the IP stage to obtain the situation assessment.

Information (local or partial situation assessments) of several IP stages are fused in the DF stage

to produce a global situation assessment. This is processed in the MP stage to generate options or
alternative courses of action. These results are fused together in the RF stage to eliminate

conflicting or infeasible options. Finally, a response is selected from the available options in the

FP stage.

Not all stages need be present in an information structure. An information flow path with all

five stages defines Flow Type 1 (Fig. 1). If there is no results fusion, then by convention we

merge the MP transition into the FP one, as shown in Flow Type 2. Similarly, if there is no data

fusion, then the MP transition is merged into the IP one as in Flow Type 3.

IP DF MP RF FP

Flow Type 1

IP DF FP

Flow Type 2

IP RF FP
Flow Type 3

Figure 1. Basic Flow Types

A general data flow structure (DFS) is classified according to the flow types of the

information flow paths it contains. If all the paths are of flow type 1, then the DFS belongs to

class 1. If some paths are of flow type 1 and some of flow type 2, the DFS class is 12. The

feasible classes are: 1, 2, 3, 12, 13, and 123. Class 23 is infeasible because flow type 2 and

flow type 3 paths cannot exchange information: the flow type 2 information paths have data for

fusion and DF transitions, while the flow type 3 information paths have results for fusion and
RF transitions. A DFS with all three flow types (class 123) is shown in Figure 2.

6

This approach has allowed the introduction of two additional design specifications: the degree

of complexity of the organization and the degree of redundancy (Figure 3). The first measure

addresses the complexity that results from transitions needing many different inputs to be

enabled. The second is a measure of the number of times outputs are replicated.

IP DF MP

IP RF FP

Figure 2. Data Flow Structure with all three Flow Types.

IPDE DF

DEGREE OF DEGREE OF
COMPLEXITY c=3 REDUNDANCY r=4

Figure 3. Examples of complexity and redundancy

The degree of complexity of a DF transition is defined as the number of input places that

feed data to the DF transition. The degree of complexity of the DF stage is defined as the

maximum of the degrees of complexity of the DF transitions. The term complexity is justified by

the observation that the more sources that feed data to a fusion node, the more complex the pro-

cessing that takes place.

7

The need for redundancy of information within the structure arises from reliability

considerations and topological factors. The degree of redundancy of an IP transition is defined

as the number of fusion stages that receive the output data of the IP transition. The degree of

redundancy of the IP stage is defined as the maximum of the degrees of redundancy of the IP

transitions. The term redundancy is justified by the fact that the same information is commu-

nicated to more than one fusion node, and is therefore redundant in the data flow structure.

The degree of complexity of a RF transition, the degree of redundancy of a MP transition,

and the degrees of complexity and redundancy of the RF stage are similarly defined. A data flow

structure with degree of complexity c1 = 2 and redundancy r1 = 2 of the DF stage, and degree of

complexity c2 = 3 and redundancy r2 = 3 of the RF stage is shown in Figure 4.

I P D F M P RF FP

I P D F M P RF F P

I P D F M P RlF FP

Figure 4. Data Flow Structure c1 = 2, r, = 2, c2 = 3, r2 = 3

Having defined the basic elements of the architectures, i.e., the information flow paths that

are derived from the requirements that the distributed system exhibit certain functionalities, it is

now necessary to introduce the grammar rules for the connectivity of the processing transitions.

They are:
- exactly one MP node can receive data from a DF node;

- exactly one FP node can receive data from an RF node;

- one IP transition for each input to the organization;

- one FP transition for each output of the organization.

These are practical rules that are consistent with the definitions of the five stages. The first

two indicate that fusion processes produce outputs that must receive some additional processing

before being distributed to other nodes. Such distribution can be made only by the MP and FP

8

transitions. The third rule associates a processor - or preprocessor in some cases - with each
input source. Similarly, each distinct output is prod.ced by a different FP transition. Recall, that

there has been no restriction that a decision making unit contain only one IP or FP transition.

The algorithm for the generation of data flow structures is based on the grammar rules and is
parameterized by the choice of flow types that should exist in the design. It produces the inci-

dence matrix of the corresponding Petri Net. In order to generate data flow structures in a con-

sistent, methodical way, the design parameters are varied between the minimum and maximum
value they may obtain. The DFS algorithm consists of seven steps:

Step 1: On the basis of the requirements of the application, determine the required functionality

and represent it in terms of information flow paths. Consider all possible DFS classes.

Step 2: Select the number n1 of initial processing (IP) transitions that provide data for fusion

(DF stage). Let n2 be the number of initial processing (IP) transitions that provide results for

fusion (RF stage). The total number n of IP transitions is:

n = nI + n2 . (7)

Step 3: Select the degree of complexity cl and the degree of redundancy r, of the DF stage.

The number p of output places of the IP transitions that are input place to DF transitions is:

p= nlr 1 (8)

and the number k of data fusion transitions is:

k = nj(r,/ c1). (9)

For the pair (r1, cl) to be feasible, i.e., for all transitions of this stage to have the same degree of

complexity and degree of redundancy, the numter k must be integer. (Another practical con-
straint on k is that it be no larger than the upper bound of available processing assets.) Since

each DF transition is connected to one middle processing (MP) transition, the number of MP

transitions is also k.

Step 4: Since one IP transition is connected to each place that represents an input to the orga-

nization, and exactly one MP transition is connected to each output place of a DF transition, the

corresponding elements of the incidence matrix can be assigned the values of 1 or 0.

9

Step 5: Select the number k2 of MP transitions that provide results for fusion (at the RF stage).
Let kI be the number of middle processing transitions that produce outputs. The total number of

IMP transitions is:

k = k, + k2. (10)

Step 6: Select the degree of complexity c2 and the degree of redundancy r2 of the RF stage.

The number q of output places of the IP transitions and MP transitions is:

q = (n2 + k2) r2 (1)

and the number of results fusion transitions, m, is:

m (n2 + k2) (r2 / c2). (12)

For the pair (r2, c-) to be feasible, i.e., for all transitions of this stage to have the same degree of

complexity and degree of redundancy, m must be integer. The second constraint on m is

m<a (13)

where a is the maximum number of available information processing units. Since each RF

transition is connected to one FP transition, the number of FP transitions is also m.

Step 7: Since each RF transition has exactly one output place; each FP transition has exactly

one input place, and, finally, exactly one output place is connected to each FP transition, the re-
maining entries of the incidence matrix are determined.

These seven steps generate the incidence matrix of a number of ordinary Petri Nets that form
the basis for designing system architectures. The precise number depends on the requirements
and the parameters. The following figure (Figure 5) indicates, as an illustrative example, the
number of possible data flow structures one can obtain as a function of the number of inputs
(sources), parameterized by the number of assets, which in this case means the maximum
number of parallel information flow paths. In one particular application, where the number of
assets was three, and there were two external sources, consideration of all possible classes of
structures led to 14 distinct Petri Nets.[5]

10

number 2500.

of
structures 2000 number

100. / of
000. assets

500"

0 l- --
1 2 3 4 5 6 7 8 a

number of inputs

Figure 5. Number of data flow structures generated by algorithm

The next step in the design procedure consists of selecting from among the generated DFS
those that seem most promising in view of the various resource constraints and such criteria as
reli~bility, symmetry, hierarchical patterns, etc. Let us assume that the following structure
(Figure 6) has been chosen as the basis for designing architectures,

Figure 6. Candidate data flow structure

Next, this net will be divided into entities that correspond to the nodes of the distributed ar-
chitecture. This is accomplished by the introduction of resource or control circuits that group to-
gether a number of transitions. Two such alternatives are shown in Figures 7 and 8.

In Figure 7, two resource places have been introduced, symmetrically, with each one defin-
ing one of the parallel information flow paths as a distinct entity or node. The resulting structure

is a parallel one with both data fusion and results fusion interconnections between the two nodes.

I

Figure 7. Two-node parallel structure

In Figure 8, four resource place have been introduced. However, each one of the
information flow paths has been partitioned into two nodes in tandem. The overall structure is

still parallel, but the information exchanges are restricted as follows: the two leftmost nodes

exchange data which are then fused; the two rightmost nodes exchange decisions or results. The
two figures show rather vividly the differences in the procedures and protocols that are needed to

convert these two structures into architectures.

Figure 8. Four-node parallel structure

The last step in the process is the drawing of the boundaries around the nodes and then
introducing the places and transitions that represent the physical system that affects the

12

interconnections between the nodes (the communications system.) Two such architectures are

shown in Figures 9 and 10.
Some more places and connectors have been added around some nodes to implement a

synchronization constraint, mandated by the specific application. Also note in both figures the

new transitions and places between nodes that model the communications or decision support

system.

SN.

Figure 9. A two-node parallel architecture

Many more architectures can be generated by considering the possible variations in allocating

resource places and in grouping entities together in one node. Selection of the preferred architec-

tures - all of which satisfy functionality and resource requirements - is accomplished by analyz-

ing the resulting structure and obtaining suitable measures of performance. Such measures

include accuracy, which is a measure of the quality of the information processing, response time,

which is a measure of the of timeliness of the response, througnput rate, and still others are

information consistency, synchronization, and coordination. [6,7]

13

7.0

-D

Figure 10. A four-node parallel architecture

THE LATTICE ALGORITHM

In contrast to the DFS algorithm, the Lattice algorithm, due to Remy [8], starts with a

generic model of an intelligent node and considers the interconnections among a specified
number of them. These nodes represent humans, machines, or humans supported by machines.

The original Petri Net model of the human decision maker, who interacts with other components
and with the environment, is shown in Figure 11 [9]. The same model is used to represent all

intel'igent nodes.

Figure 11. Four stage model of a intelligent node

The decision maker (DM) receives input signals x at the Situation Assessment (SA) stage

from a variety of sources: from the environment, from a decision support system (DSS), or from
the rest of the organization. He processes this input, with or without use of information stored in

a data base (memory), to obtain an estimate of x and of z, the "assessed situation", which he may

share with other DMs. He may also receive at this point other information, z", from the rest of

14

the organization. He combines this information with his own assessment in the Information

Fusion (IF) stage, which contains a data fusion algorithm, to obtain the final assessment of the

situation, labeled z'. The next step is the consideration of inputs v from other DMs which

could result in a restriction of his set of alternatives for generating the response to the given

input. This is the Command Interpretation (CI) stage. The outcome of the CI stage is a signal v,

which contains the data z' and the rule v', to be used in the Response Selection (RS) stage to

select the procedure or algorithm for generating the output y. This is the response of the decision

maker; it may be sent to the environment or to other DMs within the organization. Note that the

main difference between this model and the basic flow type (#1) in the DFS model is the absence

of the MP transition between the two fusion transitions. In this model, the middle processing has

been allocated to the IF and CI transitions.

Other organization components can be modeled using the same basic four stage model, but

eliminating one or more of the stages. For example, a processor that receives sensor data and

converts it to an estimate of a vector variable can be modeled by a single SA transition, while a

data fusion algorithm can be modeled by an IF transition. With this model and its variants used to

model other components, it is now possible to formulate the problem of designing distributed

architectures.

The intelligent node can only receive inputs at the SA, IF, and CI stages, and produce

outputs at the SA and RS stages. These conditions lead to the set of admissible interactions

between two nodes, or two DMs, that is shown in Fig. 11. For clarity, only the connectors from

DMi to DMJ are shown; the interactions from DMJ to DM i are identical.

The mathematical representation of the interactions between DMs is based on the connector
labels ei, si , Fij, Gij, Hij, and Cij of Fig. 12; they are integer variables taking values in (0, 1)

where I indicates that the corresponding directed link is actually present in the organization,

while 0 reflects the absence of the link. These variables can be aggregated into two vectors e and

s, and four matrices F, G, H, and C. The interaction structure of an n-decision maker organiza-

tion may be represented by the following six arrays: Two n x 1 vectors e and s, representing

the interactions between the external environment and the organization:

e a [ei] ; s M [si]; for i = 1, 2,..., n.

and four n x n matrices F, G, H, C representing the interactions between decision makers inside

the organization:

F =- [Fij]; G [Gij]; for i =, 2,..., n

H=[Hij] ; C-[Cijl and j=l,2,..., n.

15

{i _SA I F CI RZS

si

Figure 12. Allowable interactions between DMs.

Since there are four possible links between any DM and any other DM except himself, then
the maximum number of interconnecting links that an n-decision maker organization can have is

kmax = 4n2 -2n. (14)

Consequently, if no other considerations were taken into account, there could be 2kmax alterna-

tive structures. This is a very large number: 290 for a five intelligent node structure.

The analytical description of the possible interactions between nodes forms the basis for an
algorithm that generates all the nets that meet some structural constraints as well as application-

specific constraints that may be present. The set of structural constraints that has been introduced
rules out a large number of nets. The most important constraint addresses the connectivity of the
structure - it eliminates information structures that do not represent a single integrated distributed

system.
The Lattice algorithm determines the maximal and minimal elements of the set of designs that

satisfy all the constraints; the entire set can then be generated from its boundaries. The algorithm
is based on the notion of a simple path - a directed path without loops from the source to the
sink. Feasible structures are obtained as unions of simple paths. Consequently, they constitute a

partially ordered set.
The six-tuple {e, s, F, G, H, C) is called a Well Defined Net (WDN) of dimension n,

where n is the number of components in the organization. The set of all Well Defined Nets of
dimension n is denoted ''n; its cardinality is given by 2kmax, where km. is given by Eqn. (14).
The notion of a subnet of a WDN can be defined as follows. Let rl = (e, s, F, G, H, C) and

r1' = (e', s', F', G', H', C')

be two WDNs. The WDN rl is a subnet of H' if and only if

e' :- e; F' _< F; G' -5 G;

s'_s; H':5<H; C'< C

16

where the inequality between arrays is interpreted element by element. In other words, [r' is a

subnet of - if any interaction in rl', i.e., a 1 in any of the arrays e', s', F', G', H', C', is also

an interaction in 17. The union of two subnets 1-11 and nI2 of a WDN I, is a new net that con-

tains all the interactions that appear in either H1 or H2 or both.
The matrix representation, i.e., the set of arrays Ie, s, F, G, H, C), and the Petri Net

representation, given by the graph or the incidence matrix of the net, with the associated labeling
of the transitions, are equivalent, i.e., a one to one correspondence exists between them.

Let the system be modeled as having a single source and a single sink place. Each internal
place of a WDN has exactly one input and one output transition. The sink of a WDN has one in-
put but no output transitions, while the opposite stands for the source. If source and sink are
merged into one place, every place in the net will have, therefore, one input and one output tran-

sition. Since the net is strongly connected, it is a marked graph. Note that considering the source
and the sink of a WDN as the same place has no bearing on the internal topology of the net. The
assumption becomes important however when the dynamic behavior of a WDN is studied. The
merging of source and sink limits indeed the amount of information a given organization can
process simultaneously. The initial marking of the place representing the external environment
will define this bound. At this stage, a WDN may contain circuits.

While WDNs constitute the framework within which information structures will be
designed, each WDN is not a valid structure. Additional constraints to restrict the set of WDNs to
useful information structures are needed. First, there are some WDNs corresponding to
combinations of interactions between components that do not have a physical interpretation, e.g.,
DMs can exchange information - Fij and Fji can coexist - but commands are unilateral - either Cii
or Ci or none, but not both. Those WDNs should be eliminated, if realistic structures are to be

generated. The structural constraints define what kinds of combinations of interactions need to be
ruled out. Second, any realistic design procedure should allow the designer to introduce specific
structural features appropriate to the particular design problem. User-defined constraints are
introduced to address this issue. A set of four different structural constraints Rs is formulated

that applies to all organizational structures being considered:
R I A directed path should exist from the source to every node of the structure and from every

node to the sink.
R2 The structure should have no loop, i.e., be acyclical.
R3 There can be at most one link from the RS stage of a DM to each one of the other DMs,

i.e., for each i and j, only one element of the triplet (Gij, Hij, Cijj can be nonzero.
R4 Information fusion can take place only at the IF and CI stages. Consequently, the SA

and RS stages of each DM can have only one input.

17

Constraint R, eliminates structures that do not represent a single integrated system and en-

sures that the flow of information is continuous within the system. Constraint R2 allows acyclical

structures only. This restriction is made to avoid deadlock and circulation of messages within the

system. It also restricts the marked graphs to occurrence nets, which makes analysis much sim-

pler. Particularly, liveness and safety are easily treated: if the source has initially exactly one to-

ken, then each transition fires exactly once, and eventually the sink is marked. There is never
more than one token in a place. Constraint R3 states that the output of the RS stage of one DM or

component can be transmitted to another DM or component only once. It does indeed not make

much sense to send the same information to the same node at several different stages. Constraint
R4 prevents a node from receiving more than one input at the SA stage. The rationale behind this

limitation is that information cannot be merged at the SA stage; the IF stage has been specifically

introduced to perform such a fusion.

To introduce constraints that will reflect the specific application, the organization designer

can place the appropriate O's and I's in the arrays {e, s, F, G, H, C) defining a WDN. The other

elements will remain unspecified and will constitute the degrees of freedom of the design. The set
of user-defined constraints is denoted Ru , while the complete set of constraints is denoted R.

A feasible structure is a Well Defined Net that satisfies both the structural and the user-

defined constraints. The design problem is to determine the set of all feasible structures

corresponding to a specific set of constraints.
The notion of subnet introduced earlier defines an order (denoted <) on the set P'n of all

WDNs of dimension n. Therefore, maximal and minimal elements can be defined. A maximal el-

ement of the set of all feasible structures is called a Maximally Connected Organization (MAXO).

Similarly, a minimal element is called a Minimally Connected Organization (MINO). Maximally

and minimally connected organizations can be interpreted as follows. A MAXO is a WDN such

that it is not possible to add a single link without violating the set of constraints R. Similarly, a

MINO is a WDN such that it is not possible to remove a single link without violating the set of

constraints R. The following proposition is a direct consequence of the definition of maximal and

minimal elements.

For any given feasible structure l there is at least one MlNO I-Imin and one MAXO H'max

such that lmin !5 11 < imax. Note that the net fI need not be a feasible . There is indeed no

guarantee that a WDN located between a MAXO and a MINO will fulfill the constraints R, since

such a net need not be connected. To address this problem, the concept of a simple path is used.
Let FI be a WDN that satisfies constraint R I and whose source and sink have been merged

together into a single external place. A simple path of II is a directed elementary circuit which in-

cludes the (merged) source and sink places. Since the Petri Net representing n is a marked

graph, a simple path is a minimal support S-invariant of rI whose component corresponding to

18

the external place is equal to 1. Note that if the latter property is not satisfied, the S-invariant is an
internal loop of the net. The simple paths of a given WDN are themselves WDNs. We will de-
note by Sp(Ru) the set of all simple paths of the WDN that satisfies the user constraints Ru:

Sp(Ru) = spl, spr}. (15)

We will denote by uSp(Ru) the set of all possible unions of elements of Sp(Ru),

augmented with the null element (p of Tn, i.e., the WDN with all elements identically equal to
zero. The union of two elements of uSp(Ru) is the WDN composed of all the simple paths

included in either one of the two considered elements. Every WDN, element of the set
uSp(Ru), satisfies the connectivity constraint RI; furthermore, a feasible structure that fulfills
the constraint R1 is an element of uSp(Ru).

The following proposition characterizes the set of all feasible organizations. 1l is a feasible

structure if and only if
-FI is a union of simple paths, i.e., rI e uSp(Ru).

- rl is bounded by at least one MINO and one MAXO.

Note that in this approach, the incremental unit leading from a WDI to its immediate superordi-
nate is a simple path and not an individual link. In generating organizational structures with sim-
ple paths, the connectivity constraint R1 is automatically satisfied.

An algorithm has been developed [10] which generates, once the user-defined constraints
are specified, the MINOs and the MAXOs which characterize the set of all organizational
structures that satisfy the designer's requirements. The solution can be expressed in the form of a

set of lattices, with each lattice being defined by a MAXO, a MINO, and the feasible structures in
between. The complete set can be represented by a Hasse diagram that also specifies the the con-

struction of any structure by showing the simple paths that comprise it.
The next step of the analysis consists of putting the MINOs and the MAXOs in their actual

context, to give them a physical interpretation. If the organization designer is interested in a given

pair of MINO and MAXO, because they contain interactions that are deemed desirable for the
specific application, he can further investigate the intermediate nets by considering the chain of
nets that are obtained by adding simple paths to the MINO until the MAXO is reached.

This methodology provides the designer of distributed intelligence systems with a rational
way to handle a problem whose combinatorial complexity is very large.

19

CONCLUSION

Two quantitative models of distributed intelligence systems have been presented; the

formalism of Petri Nets has been used to develop explicit graphical representations of the

structures that are supported by algebraic representations. Two different algorithms for

generating alternative structures that meet a variety of structural and application-specific

constraints have been presented. The first one parameterizes the design with respect to the degree

of complexity and the degree of redundancy required in the data flow structure. The second one,

the lattice algorithm, generates the complete set of partially ordered structures.

The mathematical framework and the algorithms characterize organizations that have fixed

structures, i.e., the interconnections do not depend on the information processing task itself, or

on changes in the resources available to the organization. Current research is focused on the

characterization of variable information structures using Colored Petri Nets and Predicate

Transition Nets, forms of High Level Nets [11].

REFERENCES

[1] M. Minsky, The Society of Mind, Simon and Schuster, New York, 1986.

[2] W. Reisig, Perri Nets: An Introduction, Springer Verlag, Berlin 1985.

[3] F.Commoner and A. Holt, "Marked directed graphs," J. Computer and Sys. Science 5,
511-523, 1971.

[4] S. K. Andreadakis, "Analysis and synthesis of decisionmaking organizations," Ph.D.
Thesis. Lab. for Information and Decision Systems, MIT, Cambridge MA, 1988.

[5] S. K. Andreadakis and A. H. Levis, "Synthesis of distributed command and control for the
outer air battle," Proc. 1988 Symposium on C2 Research, SAIC, McLean, VA, 1988.

[6] S. K. Andreadakis and A. H. Levis, "Accuracy and Timeliness in Decision-Making Organi-
zations," Proc. 10th IFAC World Congress, Pergamon Press, Oxford, 1987.

[7] J. L. Grevet and A. H. Levis, "Coordination in organizations with decision support sys-
tems," Proc. 1988 Symposium on C2 Research, SAIC, McLean, VA, 1988.

[8] P. A. Remy and A. H. Levis, "On the generation of organizational architectures using Petri
Nets," In Advances in Petri Nets, G. Rozenberg (ed.). Springer Verlag, Berlin 1989

[9] A. H. Levis, "Information processing and decision-making organizations: A mathematical
description," Large Scale Systems, 7, 1984, pp. 151-163.

20

[10] P. A. Remy, A. H. Levis, V. Y. Jin, "On the design of distributed organizational struc-
tures," Automatica .24, 81-86.

[11] J. M. Monguillet and A. H. Levis, "Modeling and evaluation of variable structure command
and coni61 organizations," Proc.1988 Symposium on C2 Research, SAIC, McLean VA,
1988.

21

